Economic Evaluation Analysis of PEGylated Poly(amidoamine) Dendrimer Production by Divergent Synthesis Method
Main Article Content
Jessica Veronica
Asep Bayu Dani Nandiyanto
The purpose of this study is to evaluate the viability of a large-scale divergent growth synthesis PEGylated dendrimer poly(amidoamine) (PAMAM) production project. Engineering and economic evaluations were used to determine the results of this feasibility study. Engineering evaluation is based on a review of the initial plant design and stoichiometry calculations. While a number of factors, including the payback period, gross profit margin, cumulative net present value, etc., are used to evaluate the economic evaluation. The results of this analysis confirm that PEGylated PAMAM dendrimer may be produced on an industrial scale. In this project, 250 grams of PEGylated PAMAM dendrimer was obtained per cycle and the total profit earned was USD 4,656,187,677.16 in 20 years. Payback Period analysis shows that the investment will be profitable after more than two years. To ensure project feasibility, projects are estimated from ideal to worst conditions in production, including salaries, sales, raw materials, utilities, and external conditions such as taxes.
Cheng, B., & Kaifer, A. E. (2022). Reaction of amino-terminated PAMAM dendrimers with carbon dioxide in aqueous and methanol solutions. Molecules, 27(2), 540.
Garrett, D. E. (2012). Potash: Deposits, Processing, Properties and Uses. Springer Science & Business Media.
Ho, M. N., Bach, L. G., Nguyen, T. H., Ho, M. H., Nguyen, D. H., Nguyen, C. K., Nguyen, C. H., Nguyen, N. V., & Hoang Thi, T. T. (2019). PEGylated poly(amidoamine) dendrimers-based drug loading vehicles for delivering carboplatin in treatment of various cancerous cells. Journal of Nanoparticle Research, 21(2).
Irfan, M., Saeed, A., Akram, S., & Yameen, S. bin. (2020). Dendrimers chemistry and applications: A short review. Frontiers in Chemical Sciences, 1(1), 29–40.
Kumar, L. A., Pattnaik, G., Satapathy, B. S., Swapna, S., & Mohanty, D. (2021). Targeting to brain tumor: Nanocarrier-based drug delivery platforms, opportunities, and challenges. In Journal of Pharmacy and Bioallied Sciences (Vol. 13, Issue 2, pp. 172–177). ncbi.nlm.nih.gov.
Lee, W., Park, E. J., Kwon, O. K., Kim, H., Yoo, Y., Kim, S. W., Seo, Y. K., Kim, I. S., Na, D. H., & Bae, J. S. (2020). Dual peptide-dendrimer conjugate inhibits acetylation of transforming growth factor β-induced protein and improves survival in sepsis. Biomaterials, 246, 120000.
Liu, H., Cheng, Y., Chen, J., Chang, F., Wang, J., Ding, J., & Chen, X. (2018). Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 73, 103–111.
Lyu, Z., Ding, L., Huang, A. Y. T., Kao, C. L., & Peng, L. (2019). Poly(amidoamine)dendrimers: covalent and supramolecular synthesis. Materials Today Chemistry, 13, 34–48.
Mahmoudi, A., Jaafari, M. R., Ramezanian, N., Gholami, L., & Malaekeh-Nikouei, B. (2019). BR2 and CyLoP1 enhance in-vivo SN38 delivery using pegylated PAMAM dendrimers. International Journal of Pharmaceutics, 564, 77–89.
Nandiyanto, A. B. D. (2018). Cost analysis and economic evaluation for the fabrication of acitvated carbon and silica particles from rice straw waste. Journal of Engineering Science and Technology, 13(6), 1523–1539.
Narmani, A., Mohammadnejad, J., & Yavari, K. (2019). Synthesis and evaluation of polyethylene glycol- and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. Journal of Drug Delivery Science and Technology, 50, 278–286.
Nguyen, D. T. D., Bach, L. G., Nguyen, T. H., Ho, M. H., Ho, M. N., Nguyen, D. H., Nguyen, C. K., & Hoang Thi, T. T. (2019). Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer. Journal of Polymer Research, 26(5).
Nikdouz, A., Namarvari, N., Ghasemi Shayan, R., & Hosseini, A. (2022). Comprehensive comparison of theranostic nanoparticles in breast cancer. In American journal of clinical and experimental immunology (Vol. 11, Issue 1, pp. 1–27). n
Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., & Panahi, Y. (2021). Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), 2246–2261.
Ragadhita, R., Nandiyanto, A. B. D., Maulana, A. C., Oktiani, R., Sukmafitri, A., Machmud, A., & Surachman, E. (2019). Techo-economic analysis for the production of titanium dioxide nanoparticle produced by liquid-phase synthesis method. Journal of Engineering Science and Technology, 14(3), 1639–1652.
Sadhu, P., Kumari, M., Rathod, F., Shah, N., & Patel, S. (2022). A review on poly(amidoamine) dendrimers: Properties, synthesis, and characterization prospects. Archives of Pharmacy Practice, 13(4), 1–6.
Singhania, A., Dutta, M., Saha, S., Sahoo, P., Bora, B., Ghosh, S., Fujita, D., & Bandyopadhyay, A. (2020). Speedy one-pot electrochemical synthesis of giant octahedrons fromin situgenerated pyrrolidinyl PAMAM dendrimer. Soft Matter, 16(39), 9140–9146.
Sorroza-Martínez, K., González-Méndez, I., Martínez-Serrano, R. D., Solano, J. D., Ruiu, A., Illescas, J., Zhu, X. X., & Rivera, E. (2020). Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: Impact on the water solubility and cytotoxicity. RSC Advances, 10(43), 25557–25566.
Tsujimoto, A., Uehara, H., Yoshida, H., Nishio, M., Furuta, K., Inui, T., Matsumoto, A., Morita, S., Tanaka, M., & Kojima, C. (2021). Different hydration states and passive tumor targeting ability of polyethylene glycol-modified dendrimers with high and low PEG density. Materials Science and Engineering C, 126, 112159.
Veronica, J., Intan Febriani, L., Nurhashiva, C., Ragadhita, R., Dani Nandiyanto, A. B., & Kurniawan, T. (2021). Practical computation in the techno-economic analysis of the production of magnesium oxide nanoparticles using sol-gel method. International Journal of Informatics, Information System and Computer Engineering (INJIISCOM), 2(2).
Wang, J., Williamson, G. S., & Yang, H. (2018). Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release. Colloids and Surfaces B: Biointerfaces, 165, 144–149.
Xiangbin Liu, Qu, G., Yu, Q., Zhang, N., Wang, L., & Wang, J. (2020). Synthesis of poly(ethylene glycol) grafted polyamidoamine dendrimer hydrogels and their temperature and pH sensitive properties. Polymer Science - Series B, 62(4), 400–410.
Zhou, M., Lin, F., Li, W., Shi, L., Li, Y., & Shan, G. (2021). Development of nanosilver doped carboxymethyl chitosan-polyamideamine alginate composite dressing for wound treatment. International Journal of Biological Macromolecules, 166, 1335–1351.
Jessica Veronica , Universitas Pendidikan Indonesia, Indonesia
Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Indonesia
Asep Bayu Dani Nandiyanto , Universitas Pendidikan Indonesia, Indonesia
Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Indonesia