Chemical properties of salacca seed biochar under low temperature of pyrolysis
Main Article Content
Salak or Salacca fruit is a seasonal fruit; in some cases, this fruit easy rotten due to a lack of handling during the harvesting process or wet or humid storage. This condition will promote much waste because the fruit cannot be eaten. To minimize the waste, the seed of salak fruit can be converted to biochar. This study aimed to determine the chemical properties of biochar derived from the seeds of salacca (Salacca zalacca). The biochar is produced by burning the seeds using a furnace with a temperature of 350°C and 450°C, then ground and sieved with a size of 355 micrometers carried out at the Research Center for Limnology and Water Resources. Chemical property analysis using X-Ray Fluorescence Spectrometer (XRF) at the Lampung Advanced Characterization Laboratory- BRIN. The results show that most composition is Potassium (K). Potassium (67-70%) is the most abundant element in Salacca seed biochar, followed by chlorine. Biochar burned at 350 °C has a potassium content of 70.25%, while biochar burned at 450 °C has a potassium content of 67.86%. Biochar burned at 350 °C has a chlorine content of 25.35%, while biochar burned at 450 °C has a chlorine content of 24.66%. The percentage of potassium and chlorine decreases as the temperature rises. Furthermore, the phosphorus (P) and calcium (Ca) content of biochar appear at biochar burned at 450 °C.
Basu, P. (2018). Biomass Gasification, Pyrolysis Dan Torrefaction: Practical Design Dan Theory. Inggris. Academic Press.
Girsang, E., Kiswandono, A. A., Aziz, H., Zulkarnaik, C. dan Zein, R. 2015. Serbuk Biji Salak (Salacca zalacca) sebagai Biosorben dalam Memperbaiki Kualitas Minyak Goreng Bekas. Prosiding Seminar Nasional Pendidikan Sains “Pengembangan Model dan Perangkat Pembelajaran untuk Meningkatkan Kemampuan Berpikir Tingkat Tinggi”, 583-594
Goenardi, D. H., & Santi, L. P. (2017). Kontroversi Aplikasi dan Standar Mutu Biochar. Jurnal Sumberdaya Lahan, 11 (1), 23-32. http://dx.doi.org/10.21082/jsdl.v11n1.2017.23-32
Herlambang, S., Purwono, Gomareuzzaman, M., Wibowo, A. W. (2020). Buku Ajar: Biochar “Salah Satu Alternatif untuk Perbaikan Lahan dan Lingkungan”. Lembaga Penelitian dan Pengabdian kepada Masyarakat UPN Veteran Yogyakarta
Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. https://doi.org/10.5194/bg-11-6613-2014
Nurida, N.L. (2014). Potensi Pemanfaatan Biochar untuk Rehabilitasi Lahan Kering di Indonesia. Jurnal Sumberdaya Lahan, 8 (3), 57-68. http://dx.doi.org/10.21082/jsdl.v8n3.2014.%25p
Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitigation and Adaptation Strategies for Global Change, 11, 429–444. https://doi.org/10.1007/s11027-005-9007-4
Qambrani, N. A., Rahman, M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255-273. https://doi.org/10.1016/j.rser.2017.05.057
Rahmat, A. (2021). Chemical Properties of Biochar from Date Palm Seed (Phoenix dactylifera L.) under Low Temperature Pyrolysis as Soil Amendment Candidate. Applied Research in Science and Technology, 1(2), 116–120. https://doi.org/10.33292/areste.v1i2.13
Sun, K., Keiluweit, M., Kleber, M., Pan, Z., Xing, B. (2011). Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour Technol, 102 (21), 9897–9903. https://doi.org/10.1016/j.biortech.2011.08.036
Surbakti, C. I., & Barus, B. R. (2022). Manufacture of Active Carbon Tablets From Salacca (Salacca zalacca) Seeds As Anti-Diary Treatment. JBIO: Jurnal Biosains, 8 (1), 30-34. https://doi.org/10.24114/jbio.v8i1.32356
Zamroni, A., Zubaidah, E., Rifa'i, M., & Widjanarko, S. B. (2018). Anti-hyperglycemic and Immunomodulatory Activity of a Polyherbal Composed of Sesbania grandiflora, Salacca zalacca and Acalypha indica. The Journal of Experimental Life Science, 8(3), 184-192. https://doi.org/10.21776/ub.jels.2018.008.03.09
Ali Rahmat , National Research and Innovation Agency, Indonesia
Research Center for Limnology and Water Resources, National Research and Innovation Agency, Indonesia
Winih Sekaringtyas Ramadhani , University of Lampung, Indonesia
Faculty of Agriculture, University of Lampung, Indonesia
Muhammad Nur , University of Lampung, Indonesia
Faculty of Agriculture, University of Lampung, Indonesia
Sutiharni Sutiharni , University of Papua, Indonesia
Faculty of Agriculture, University of Papua, Indonesia
Abdul Mutolib , University of Siliwangi, Indonesia
University of Siliwangi, Indonesia