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 Background: One of the main environmental challenges in Coal-Fired 
Power Plant (CFPP) operations is the large amount of Fly Ash and Bottom 
Ash (FABA) produced, which creates significant waste management issues. 

Reducing FABA production through biomass co-firing has become a 
potential solution, yet its effectiveness in actual operations remains 
underexplored. Asam Asam Power Plant Unit 1–4, with a capacity of 4 × 

65 MW in South Kalimantan, is one of the power plants that utilize sawdust 
biomass in its operations. 
Aims: This study aims to analyze the effect of coal and biomass 

consumption on FABA generation during 2022, 2023, and 2024. 
Methods: The method employed is multiple linear regression using 

Minitab version 21.4.1 software, with coal consumption (X1) and biomass 
consumption (X2) as independent variables and FABA generation (Y) as 
the dependent variable. 

Result: The results show that coal consumption has a positive relationship 
with FABA generation, while biomass consumption shows a negative 
relationship. ANOVA test results indicate that only coal consumption 

significantly affects FABA generation. A notable decrease in FABA 
production in 2024 signifies an increase in biomass utilization in the fuel 

mixture, highlighting its potential in reducing solid waste generation from 
CFPP operations. A simulation involving three biomass-coal blending 
scenarios demonstrated that incorporating 20% biomass into the fuel mix 

can reduce FABA generation by up to 27.79%. 
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1. Introduction 

A CFPP continues to be a major source of electricity in Indonesia, primarily relying on coal 

combustion to meet national energy demands (Pambudi et al., 2023). However, the combustion of coal 

results in the generation of solid wastes, notably FABA, which present significant challenges for 

environmental management (Suripto et al., 2024). The amount of FABA produced tends to increase 

with plant capacity and coal consumption (Rahim et al., 2023). Fly Ash, typically released with flue 

gases, contains hazardous compounds such as heavy metals, which can contribute to air and soil 

pollution if not managed properly (Chen et al., 2024). Meanwhile, Bottom Ash, which accumulates at 

the bottom of the boiler, poses long-term environmental risks despite its partial reuse in construction 

materials (Eom et al., 2024). 

To reduce the environmental impact of CFPP, biomass co-firing has emerged as a cleaner and more 

sustainable alternative (Apriliyanti & Nugraha, 2025). Biomass, such as sawdust, when burned 

alongside coal, is believed to reduce greenhouse gas emissions and may also affect the amount and 

characteristics of FABA generation (Yana et al., 2022). Numerous international studies have examined 

the effects of co-firing on FABA generation. For instance, Wu et al. (2025) found that co-firing with 

biomass significantly reduced ash yield and changed its composition, making it less harmful. 

Moreover, Marganingrum et al. (2022) observed that the reduction in coal usage due to biomass 

substitution directly affected the volume of FABA generation. 

Despite the increasing amount of research, most studies on biomass co-firing primarily focus on 

emission reductions or boiler performance, with limited attention given to its specific impact on FABA 

quantities, particularly in the Southeast Asian context (Zhai et al., 2025). Furthermore, while some 

studies discuss the general potential of biomass in CFPP, quantitative analysis that links fuel 

consumption to FABA production over several years is still scarce (Bayu et al., 2023). 

CFPP Asam Asam Unit 1-4, located in South Kalimantan, is one of Indonesia’s pioneers in using 

biomass co-firing with sawdust since 2021. However, there has been no comprehensive analysis that 

evaluates the correlation between coal and biomass consumption and FABA generation in this plant, 

particularly utilizing long-term operational data. Therefore, This study aims to analyze the effect of 

coal and biomass consumption on FABA generation during 2022, 2023, and 2024. Using multiple 

linear regression analysis, the study will provide empirical evidence on how biomass co-firing impacts 

FABA generation during actual plant operations. This study not only identifies historical patterns but 

also investigates the potential effects of different coal and biomass proportions in the fuel mix on 

FABA generation. In order to quantify the possible decrease in FABA under various operating 

situations, this study simulates various co-firing ratios, such as 10%, 20%, or 30% biomass 

substitution. The purpose of these forecasts is to assist decision-makers in assessing the best biomass 

blending techniques for reducing solid waste in CFPP operations.  

 

2. Methods 

2.1 Location 

CFPP Asam Asam Unit 1-4, with a capacity of 4 x 65 MW, is located in Asam Asam Village, Jorong 

District, Tanah Laut Regency, South Kalimantan. CFPP Asam Asam Unit 1-4 serves as voltage 

support on the southern side of the interconnection system and is part of the base load in the 

Kalimantan interconnection power grid.  
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Figure 1. Research Location. 

2.2 Research Approach 

This research adopts a quantitative approach utilizing a Multiple Linear Regression (MLR) method to 

analyze the relationship between coal and biomass consumption and FABA generation. The objective 

is to assess both the partial and simultaneous effects of the two independent variables (coal and 

biomass consumption) on the dependent variable (FABA generation). The study flowchart that follows 

is designed to give clarity on the procedure and sequence of analysis: 

 
Figure 2. Research Flowchart. 
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2.3 Data Collection  

The operational reports of CFPP Asam Asam Unit 1-4 provided the secondary data used in this 

research. The data span a period of three years (2022-2024) and includes: coal consumption (X1) 

measured in ton, biomass consumption (X2) measured in ton, FABA generation (Y) measured in ton, 

and gross production measured in kWh. Coal and biomass consumption are chosen as independent 

variables because they are the main fuels that directly impact the combustion process and consequently 

the generation of solid by-products like FABA. Gross production serves a key to assess the correlation 

between electricity output and FABA generation, providing insight into waste intensity 

 

2.4 Data Preprocessing  

Using linear trends to interpolate missing values and guaranteeing unit consistency across all datasets 

were examples of data preparation (Zhang et al., 2023). Boxplots were used to visually identify 

outliers, and the correctness of the data (Mazarei et al., 2025). 

 

2.5 Preliminary Statistical Analysis 

The dataset was summarized using descriptive statistics, and multicollinearity was examined and 

correlations between variables were assessed using Pearson correlation analysis (Sundus et al., 2022). 

By doing these actions, the data was guaranteed to be appropriate for regression analysis. 

 

2.6 Classical Assumption Testing 

The regression model was validated using traditional assumption testing. Multicollinearity was 

examined using the Variance Inflation Factor (VIF), autocorrelation was examined using the Durbin–

Watson statistic, and normality was evaluated using the Kolmogorov-Smirnov test based on p-values  

(Iheaka, 2025). By looking at the p-values of X1 and X2, heteroscedasticity was assessed; findings 

larger than 0.05 suggested homoscedasticity. 

  

2.7 Hypothesis Development 

To evaluate the relationship between coal and biomass consumption and the amount of FABA 

generation, this study formulates both partial and simultaneous hypotheses. The statistical analysis of 

multiple linear regression is based on these hypothesis. 

For the partial hypotheses: 

• H0-1: Coal consumption (X1) significantly affects FABA generation (Y). 

• Ha-1: Coal consumption (X1) does not significantly affect FABA generation (Y). 

• H0-2: Biomass consumption (X2) significantly affects FABA generation (Y). 

• Ha-2: Biomass consumption (X2) does not significantly affect FABA generation (Y). 

For the simultaneous hypotheses: 

• H0-2: Coal consumption (X1) and biomass consumption (X2) have a significant effect on FABA 

generation (Y). 

• Ha-2: Coal consumption (X1) and biomass consumption (X2) do not have a significant effect on 

FABA generation (Y). 

 

2.8 Regression Analysis 

The MLR used is: 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+∈.  

Where: 

Y  : FABA generation (ton) 

X1  : Coal consumption (ton) 

X2  : Biomass consumption (ton) 

𝛽0  : Intercept 
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𝛽1&𝛽2 : Regression coefficients 

∈  : Error term 

 

To obtain the MLR equation, this study uses Minitab software version 21.4.1, which provided 

regression coefficients, R², ANOVA tables, and residual plots. After building the regression model, a 

number of fictitious coal-to-biomass cofiring ratios, including 90:10, 80:20, and 70:30, are simulated 

in order to perform scenario analysis. These simulations anticipate FABA generation under different 

fuel mixes while maintaining a constant total fuel input using the well-established regression equation. 

In order to help the development of evidence-based co-firing policies, this scenario study aims to 

forecast how expanding biomass substitution may lower FABA production in real-world scenarios. 

 

3. Results and Discussion 

3.1 Existing Operational Conditions at the CFPP Asam Asam Unit 1-4 

The demineralized water cycle and the fuel cycle are the two main operational cycles that are observed 

at the Asam CFPP Units 1-4. Freshwater from the Asam River is used to start the water cycle. It is then 

processed in the Water Treatment Plant (WTP) to create demineralized water. This water passes 

through the condenser and turbine system after being kept in the Cold Condensate Storage Tank 

(CCST). The feedwater is compressed and heated further before going into the boiler after being 

heated in the Low-Pressure Heater (LPH) and High-Pressure Heater (HPH) and having the gas 

removed in the deaerator. The turbine-generator system is powered by high-pressure steam produced 

by combustion of the water inside the boiler. The closed loop is then completed by condensing and 

recirculating the resultant steam. 

Co-firing sawdust biomass and coal is part of the fuel cycle, and it has been used at the plant from 

October 2021. With the help of forced and primary air fans, fuel is mixed, ground up, and delivered to 

the boiler, where it is burned. FABA are solid wastes and flue gas produced by this operation. While 

Fly Ash is caught by the Electrostatic Precipitator (ESP) prior to flue gas being released through the 

stack in accordance with emission regulations, Bottom Ash settles in the Submerged Scraper 

Conveyor. 

 
Figure 3. Water Treatment System. 
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Figure 4. CFPP Asam Asam Unit 1-4 Cycle. 

3.2 Data Preprocessing 

To guarantee preparedness for statistical modeling, all datasets underwent a methodical data cleaning 

procedure after the initial data collection. This included verifying the types of variables, converting 

numeric values into standardized formats, and eliminating superfluous characters (such as commas, 

needless whitespace, and hyphens). After data cleaning, the biomass consumption for May 2022 was 

recorded as zero. This figure accurately reflects the operational conditions of that month, as co-firing 

was not implemented due to specific constraints at the plant. Therefore, we retained this value as a 

valid entry instead of treating it as a missing value. Outlier detection was conducted using visual 

diagnostics with boxplot (Arimie et al., 2020). No significant outliers were observed in coal 

consumption, biomass consumption, and FABA generation data across all three years. This suggests 

operational consistency in fuel use and combustion residuals. 

 

 
Figure 5. Boxplot Data 

3.3 Descriptive Statistical Analysis 

Table 1 provides a summary of the dataset's descriptive statistics for the years 2022–2024. The mean 

and median values for each variable are fairly close together, suggesting a distribution that is largely 

symmetric, however small variations in certain instances point to minor skewness. Interestingly, not all 

variables have a specified mode (shown by "*"), suggesting that no single value appears more than 

once in the datasets; hence, there is no dominant or frequently recurring value. 
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Table 1. Descriptive Statistical Analysis. 

Variable Mean Median Mode Skewness 

X1 2022 106,548 108,354 * -0.34 

X2 2022 573.10 540.90 * -0.04 

Y 2022 5,179 5,101 * 0.46 

X1 2023 118,144 114,496 * 0.23 

X2 2023 632.20 628.10 * -0.47 

Y 2023 5,411 5,460 * -0.04 

X1 2024 1,065,071 107,277 * -0.21 

X2 2024 1,009 961 * 0.47 

Y 2024 3,904 3,952 * -0.25 

The distribution's symmetry, indicated by low skewness and minimal differences between the mean 

and median, supports the suitability of the dataset for parametric analyses such as MLR (Rehman et 

al., 2024). 

 

3.4 Correlation Test 

To evaluate the relationship between two parameters, Pearson's correlation coefficient can be used. 

This method determines both the direction and strength of the relationship between the variables. A 

positive correlation coefficient signifies a direct relationship, indicating that an increase in one variable 

is associated with an increase in the other variable.  

 

  

 
Figure 6. Matrix Plot of Pearson Correlation. 
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The correlation analysis conducted over the period of 2022 to 2024 reveals a consistent pattern in 

the relationship between fuel consumption and FABA generation. In 2022, coal consumption (X1) 

exhibited a moderately strong positive correlation with FABA generation (Y) (r = 0.744) (Anggara et 

al., 2024), while biomass consumption (X2) showed a very weak negative correlation with Y (r = -

0.090). The interrelationship between X1 and X2 was weakly positive (r = 0.069), suggesting that the 

degree of biomass substitution for coal remained limited during this year. 

In 2023, the correlation between coal consumption and FABA generation increased significantly (r 

= 0.906), whereas the relationship between biomass and FABA became slightly more negative (r = -

0.265), indicating an emerging inverse trend. Concurrently, the correlation between X1 and X2 shifted 

toward a slightly stronger negative association (r = -0.232), which aligns with an observed pattern of 

partial fuel switching (Rahim et al., 2023). 

By 2024, the correlation between coal consumption and FABA generation had reached a very strong 

level (r = 0.938). Interestingly, the correlation between biomass consumption and FABA generation 

reversed direction, showing a moderate positive relationship (r = 0.555), which may suggest a shift in 

the operational role of biomass in the combustion process. The inter-fuel correlation also increased to a 

moderate positive value (r = 0.612), potentially reflecting a more integrated and planned approach to 

fuel co-firing. These findings indicate evolving co-firing dynamics and their influence on FABA 

generation over the three-year period. 

 

3.5 Classical Assumption Testing 

The classical assumption test is a statistical requirement conducted in multiple linear regression 

analysis using ordinary least squares (OLS). In OLS, there is one dependent variable and multiple 

independent variables. The classical assumptions for multiple linear regression tests include normality 

test, multicollinearity test, autocorrelation test, and heteroscedasticity test. 

 

3.5.1 Normality Test 

Normality testing was conducted using Minitab software with the Kolmogorov-Smirnov method, 

yielding the p-value shown below.  

Table 2. Normality Test. 

Year Variable P-Value P-Value Residual 

2022 X1 0.300 

0.155  X2 0.799 

 Y 0.466 

2023 X1 0.198 

0.268  X2 0.636 

 Y 0.385 

2024 X1 0.223 

0.572  X2 0.693 

 Y  0.225 

The table indicates that all variables for 2022-2024 have a p-value more than 0.05 , which suggests 

that this data is normally distributed. The p-value for the residual normality test in 2022, 2023, and 

2024 were 0.155, 0.268, and 0.572 (> α 0.05), which leads to the conclusion that the data is normally 

distributed and meets the requirements for linear regression. 

 

3.5.2 Multicollinearity Test 

Based on the calculations in Minitab software, the VIF values were found to be < 10, indicating that 

there is no multicollinearity in the data and that it meets the criteria for performing linear regression 

tests (Daoud, 2017). 
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Table 3. Multicollinearity Test. 

Year Variable VIF 

2022 X1 1.000 

 X2  1.000 

2023 X1  1.060 

 X2 1.060 

2024 X1 1.600 

 X2 1.600 

 

3.5.3 Autocorrelation Test 

The autocorrelation test was conducted using the Durbin–Watson (DW) statistic. A DW value close to 

2 indicates no autocorrelation; a value less than 2 (approaching 0) suggests positive autocorrelation; 

and a value greater than 2 (approaching 4) indicates negative autocorrelation (Uyanto, 2020). Based on 

calculations performed using Minitab software, the DW values were 2.045, 2.221, and 2.163, 

respectively, indicating that all three regression models satisfy the assumption of no autocorrelation. 

 

3.5.4 Heteroscedasticity Test 

The heteroscedasticity test was conducted by analyzing the residuals versus fitted values plot in 

Minitab software (Jarantow et al., 2023). If the plot displays a random scatter without a discernible 

funnel-shaped pattern, it indicates the absence of heteroscedasticity. Based on the residual plot output 

from Minitab, the residuals appear randomly and evenly dispersed, suggesting that heteroscedasticity is 

not present and the data satisfy the assumptions required for linear regression analysis. 

  

 
Figure 7 Residual Plot Graphic. 
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3.6 Hypothesis Formulation 

Hypothesis formulation testing is a typical technique used in data analysis to ascertain the accuracy of 

an estimated regression model obtained from the data (Song, 2024). Therefore, this method is closely 

related to the accuracy of the conclusions drawn. H0: β = 0 = There is no relationship between variable 

Y and variable X in the established regression model. Ha: β ≠ 0 = There is a relationship between 

variable Y and variable X in the established regression model. Based on the regression F-value (6.04, 

21.08, and 32.99) being greater than the F-table (3.10), the null hypothesis (H0) is rejected, and the 

alternative hypothesis (Ha) is accepted, concluding that there is a relationship between variable Y and 

variable X in the established regression model. 

 

3.7 Multiple Linear Regression 

Regression equations are algebraic expressions that represent regression lines. When analyzing two 

variables, X and Y, we can describe two regression lines: one for the regression of X on Y and the 

other for the regression of Y on X. The first regression line predicts probable values of X based on 

different values of Y, while the second line predicts probable values of Y based on given values of X. 

Therefore, we obtain two distinct regression equations. 

 

Table 4. Equation of Multiple Linear Regression. 

Year Equation 

2022 Y = 846 + 0.042 X1 - 0.024 X2  

2023 Y = 768+ 0.041 X1 - 0.027 X2 

2024 Y = 867 + 0.029 X1 - 0.037 X2  

 

From the Table 4, the following can be interpreted: 

1. Intercept = 846, 768, and 867 predicts the amount of FABA generated when both coal 

consumption and biomass consumption are zero. In this case, X = 0 falls outside the range of 

independent variables, so the regression model cannot be interpreted. 

2. For every 1-ton increase in coal consumption, assuming biomass consumption remains 

constant,  FABA generation will increase by 0.042 tons in 2022, 0.041 tons in 2023, and 0.029 

tons in 2024. 

3. For every 1-ton increase in biomass consumption, assuming coal consumption remains 

constant,  FABA generation will decrease by 0.024 tons in 2022, 0.027 tons in 2023, and 0.037 

tons in 2024. 

 

3.8 Interpretation 

The interpretation of this study is structured into several key components: ANOVA testing, analysis of 

correlation and determination coefficients, aptness test, assessment of biomass influence on FABA and 

electricity generation, and simulation-based comparison of biomass and coal contributions to FABA 

generating. 

 

3.8.1 ANOVA Testing 

Based on the results of the ANOVA test, coal consumption (X1) has a p-value (0.007, 0.006, and 

0.000) < α 0.05 and T-value (3.450, 6.210, and 6.550) > T-table (2.262), which indicates that coal 

consumption (X1) has a significant effect on FABA generating (Y). This confirms that coal is the main 

contributor to ash formation due to its higher ash content and more incomplete combustion compared 

to biomass. Meanwhile, biomass consumption (X2) has p-value (0.530, 0.693, and 0.841) > α 0.05 and 

T-value (-0.650, -0.410, and -0.210) < T-table (2.262), showing that biomass consumption (X2) does 

not have a significant effect on FABA generating (Y). The weak statistical relationship is further 
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reflected in the observed negative correlation between biomass consumption and FABA output. A 

plausible explanation for this observation lies in the combustion characteristics of biomass. Biomass 

generally contains lower levels of ash-forming components, such as fixed carbon and minerals, and 

higher volatile matter compared to coal (Kim et al., 2024). Consequently, increasing the proportion of 

biomass in co-firing tends to reduce the total ash produced per unit of energy generated (Murphy et al., 

2023). Additionally, when biomass is co-fired in smaller proportions, it may enhance combustion 

efficiency, leading to more complete combustion and a lower generation of FABA (Turner et al., 

2023). 

Table 5. ANOVA Test. 

Year Variable T-Value P-Value T-Table 

2022 X1 3.450 0.007 

2.262 

 X2 -0.650 0.530 

2023 X1 6.210 0.000 

 X2 -0.410 0.693 

2024 X1 6.550 0.000 

 X2  -0.210 0.841 

 

Based on the regression p-value (0.022, 0.000, and 0.000) < α 0.05, it can be concluded that coal 

consumption (X1) and biomass consumption (X2) simultaneously have a significant effect on FABA 

generating (Y). This suggests that there may be interaction effects or indirect contributions of biomass 

within the combustion process, which require further investigation (Bhoi et al., 2023). Practically, 

these findings highlight the potential of biomass co-firing as a strategy to reduce greenhouse gas 

emissions and decrease FABA generating, especially when biomass replaces a portion of high-ash coal 

(Turner et al., 2023). However, the fact that biomass alone does not significantly impact fuel ash 

behavior indicates that its effects are context-dependent—more pronounced at higher substitution 

levels or with certain types of biomass (Bhoi et al., 2023). Therefore, optimizing biomass ratios and 

understanding fuel properties are essential for effective co-firing implementation (Kim et al., 2024). 

 

3.8.2 Analysis of Correlation and Determination Coefficients 

Based on the correlation coefficient values (0.757, 0.776, and 0.938), there is a relatively strong 

relationship between coal and biomass consumption and the quantity of FABA generated. Regarding 

the coefficient of determination, in 2022, 47.83% of the variation in FABA generation can be 

explained by coal and biomass consumption, while the remaining 52.17% is attributed to other factors 

not included in the regression model. In 2023, coal and biomass consumption accounted for 51.48% of 

the variation in FABA generation, with the remaining 48.52% influenced by external variables. In 

2024, 85.33% of the FABA generation was determined by coal and biomass consumption, whereas 

14.67% resulted from variables outside the model. 

 

Table 6. Correlation and Determination Coefficients. 

Year R-sq (%) R-sq (adj) (%) 

2022 57.32 47.83 

2023 60.30 51.48 

2024 88.00 85.33 

 

3.8.3 Aptness Test 

Since the regression F-value (6.04, 21.08, and 32.99) is greater than the F-table value (3.10), the null 

hypothesis (H0) is rejected, and the alternative hypothesis (Ha) is accepted, concluding that there is a 
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significant relationship between variable Y and variable X in the established regression model (Matson 

& Huguenard, 2007). 

 

3.8.4 Assessment of Biomass Influence on FABA and Electricity Generation 

The influence of biomass consumption on FABA generation and electricity output was evaluated by 

analyzing data collected from 2022 to 2024. The analysis utilized annual records of biomass 

consumption (in tons), electricity production (in MWh), and FABA generation (in tons). 

 

Table 7. Biomass Consumption, Gross Production, and FABA Generating. 

Year Biomass Consumption 

(ton) 

Gross Production 

(MWh) 

FABA Generating 

(ton) 

2022 6,440.66 1,704,105.80 62,152.94 

2023 7,172.85 1,859,374.60 64,926.29 

2024 11,520.75 1,670,902.11 46,849.84 

 

Based on Table 7, there was a significant increase of 78.87% in biomass consumption in 2024 

compared to 2022; however, the amount of FABA generated dropped sharply by 24.6%. This indicates 

a negative relationship between biomass consumption and FABA generation. The reduction in FABA 

is attributed to the combustion characteristics of biomass, which typically contains lower levels of ash 

and fixed carbon, along with higher volatile matter compared to coal. These properties lead to more 

efficient combustion and result in less solid residue. The highest electricity production occurred in 

2023, reaching 1.86 GWh with a biomass consumption of 7,172.85 tons and FABA generation of 

64,926.29 tons. In 2024, despite a substantial increase in biomass consumption, electricity output 

declined compared to the previous two years. This suggests that a higher biomass input does not 

necessarily lead to increased electricity production, particularly if the biomass is used in excessive 

amounts or has a low calorific value. Optimizing the co-firing ratio is essential to simultaneously 

improve combustion efficiency and reduce FABA generation. 

 

3.8.5 Simulation-Based Comparison of Biomass and Coal Contributions to FABA Generating 

The simulation was carried out by varying the proportion of coal and biomass mixtures under three 

scenarios: Scenario 1 consisted of 100% coal and 0% biomass; Scenario 2 used 90% coal and 10% 

biomass; and Scenario 3 applied 80% coal and 20% biomass. Increasing the biomass ratio to 20% in 

coal-fired power plants is considered technically feasible, as the risks of slagging, fouling, and 

corrosion remain within acceptable operational thresholds (Aditya et al., 2022). The simulation 

employed the 2024 regression model: Y = 867 + 0.029 X1 - 0.037 X2.This model was selected due to 

its highest adjusted R-squared value, indicating that it provides the best representation of the 

relationship between coal consumption, biomass usage, and FABA generation among the models 

evaluated. 

 

Table 8. Comparison Biomass Ratio to FABA Generating. 

 

Scenario Coal (ton) Biomass (ton) FABA Generating (ton) 

1 46,849.84 -    2,225.65 

2 42,164.85  4,684.98  1,916.44 

3 37,479.87 9,369.97 1,607.23 

 

As shown in Table 8, increasing the proportion of biomass in the fuel mix consistently leads to a 

significant reduction in estimated FABA generation. Transitioning from 0% to 20% biomass results in 
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approximately a 27.79% decrease in FABA output. This reflects the inverse relationship between 

biomass consumption and ash formation. This trend aligns with the chemical and physical properties of 

biomass, which generally contains fewer ash-forming elements and promotes more efficient 

combustion due to its higher volatile matter content (Schlupp et al., 2024). 

The reduction of FABA not only minimizes land requirements for waste disposal but also decreases 

the potential for soil and water contamination. The utilization of FABA as construction materials—

such as paving blocks, bricks, and land filler—implemented at the Asam Asam CFPP exemplifies a 

circular economy practice that aligns with the Sustainable Development Goals (SDGs). The findings of 

this study also support the Indonesian government's policy framework, particularly Regulation of the 

Minister of Energy and Mineral Resources No. 11 of 2021 concerning the Implementation of 

Electricity Business, which promotes biomass co-firing as a pathway toward clean energy transition. 

 

4. Conclusions 

The study reveals that coal consumption significantly contributes to FABA generation, whereas 

biomass consumption does not exhibit a statistically significant effect. This finding aligns with the 

inherent characteristics of biomass, which typically contains lower levels of ash and fixed carbon, as 

well as higher volatile matter, resulting in more efficient combustion and reduced solid residues. A 

simulation involving three biomass-coal blending scenarios demonstrated that incorporating 20% 

biomass into the fuel mix can reduce FABA generation by up to 27.79%. The regression model from 

2024 was selected due to its highest adjusted R-squared value, indicating superior predictive 

performance compared to other models. Although increased biomass consumption does not 

consistently correlate with higher electricity production, optimal co-firing configurations can mitigate 

the environmental impact of combustion waste without compromising energy efficiency. With a 

coordinated technical and policy approach, biomass co-firing presents a viable strategy for coal-fired 

power plants in Indonesia to reduce emissions and solid waste sustainably. 
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