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 Background: Understanding the interaction, spatial and vertical distribution 

of soil chemical properties over climate type in tropical Asia and various 

depths of soil is essential for sustainable land management, particularly in 

regions experiencing dynamic conditions. 

Aims & Methods: This study investigates the relationships of each parameter 

such as cation exchange capacity (CEC), soil pH, and soil organic carbon 

(SOC) tropical Climate Asia. Using stratified random sampling based on 

Köppen–Geiger climate classifications and a consistent spatial resolution of 

0.25° × 0.25°, we analyzed 45 sample points distributed across tropical 

rainforest, monsoon, and savanna climates. The data were extracted from 

SoilGrids 250m and reconciled using conservative remapping and bilinear 

interpolation techniques. Corresponding soil chemical data were obtained 

from validated regional databases.  

Result: The results show that a correlation matrix analyzing relationships 

among key soil physico-chemical properties across multiple depths. Strong 

positive correlations were found between soil organic carbon (SOC) and total 

nitrogen (N) (r > 0.8), reflecting their shared origin in organic matter. Bulk 

density (BD) exhibited moderate to strong negative correlations with SOC and 

N (r ≈ -0.5 to -0.8), particularly in surface layers, indicating the influence of 

organic matter on soil structure. Correlations weaken with depth, reflecting 

reduced nutrient interaction. These patterns highlight the importance of 

organic matter inputs and minimal soil disturbance in maintaining soil health 

and guiding sustainable land management strategies. 
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1. Introduction 

Spatial distribution analysis has emerged as a critical tool in environmental science, agriculture, and land 

management. By examining the variation of different parameters across space, researchers can detect 

patterns, diagnose anomalies, and make informed decisions about land use, conservation, and resource 

allocation (Hovhannissian et al., 2019). In soil science, spatial variability is particularly important, as 

properties like nutrient content, organic matter, pH, and water retention can vary significantly even 

across small distance (Arrouays et al., 2020). Overlooking this variability risks inefficient resource use, 

poor land management, and accelerated environmental degradation (Libohova et al., 2024). 

For example, soil pH, controls nutrient solubility, which has deeviations from a neutral to slightly 

acidic pH can inhibit plant nutrient uptake and disrupt soil processes (Barrow & Hartemink, 2023). Bulk 

density reflects soil structure and compaction, affecting root penetration and water movement; higher 

bulk density often signals degraded soil conditions (Tian et al., 2020). Nitrogen is a key macronutrient 

whose availability is sensitive to pH, moisture, and organic matter dynamics (Lai et al., 2024; Wenzhu 

et al., 2023). SOC serves as a critical driver of soil fertility, improving aggregation, increasing CEC, and 

supporting microbial communities (Wang et al., 2025). CEC reflects the soil’s ability to retain essential 

nutrients and buffer pH changes, closely linked to organic matter and higher SOC can enhance both 

water retention and CEC, while bulk density influences the availability of both water and nitrogen 

(Hailegnaw et al., 2019).  

Understanding the spatial distribution of soil chemical properties is essential for promoting 

sustainable agricultural practices. Key soil attributes—such as pH, organic carbon, nitrogen content, and 

cation exchange capacity (CEC)—directly impact nutrient availability, soil health, and crop productivity. 

Spatial analysis enables precision farming approaches that optimize the application of fertilizers and 

water, ultimately increasing yields, reducing costs, and minimizing environmental impacts (Ismail et al., 

2025; Sainju & Liptzin, 2022). 

Despite growing recognition of spatial variability’s importance, past studies often faced limitations, 

such as sparse sampling and oversimplified mapping methods. Much research has also focused only on 

surface soils, neglecting deeper layers critical for long-term fertility and water storage. Advances in 

remote sensing and machine learning now provide opportunities to overcome these challenges 

(Baltensweiler et al., 2021; Diaz-Gonzalez et al., 2022). Therefore, this study aimed to analyse the spatial 

distribution of soil chemical properties in the multi-depth of soil and using multi-parameter spatial 

datasets over tropical climate Asia for supporting climate-resilient and sustainable agricultural practices. 

 

2. Methods 

2.1 Study area 

Southeast Asia encompasses a diverse climatic landscape, primarily dominated by tropical climate types 

as classified by the Köppen–Geiger system, including tropical rainforest (Af), tropical monsoon (Am), 

and tropical savanna (Aw) zones. These climate regimes, characterized by high temperatures and distinct 

wet and dry seasons, exert a strong influence on the region's soil formation and chemical properties. The 

selection of sampling points was conducted using a stratified random sampling method, based on the 

Köppen–Geiger climate classification, data availability, and the grid resolution of 0.25° × 0.25°, 

consistent with the resolution of the validation datasets. Based on these criteria, a total of 45 sampling 

points were identified, distributed across the Southeast Asian region. 
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Figure 1. Study area 

 

2.2 Datasets 

SoilGrids250m represents a major advancement in global digital soil mapping, offering high-resolution 

(250 m) gridded predictions of soil properties and classes using machine learning and the dataset based 

on ISRIC (ground-truth database over each region or countries) (Hengl et al., 2017). Utilizing over 

150,000 harmonized soil profiles and 158 environmental covariates from remote sensing and global 

datasets, the system predicts key soil attributes—such as organic carbon, pH, texture fractions, bulk 

density, and depth to bedrock—at seven standard depths. Ensemble modeling approaches, including 

random forest and gradient boosting, achieved substantial accuracy, explaining up to 83% of the variance 

in some soil properties. Compared to its predecessor (SoilGrids1km), accuracy improvements range 

from 60% to 230% (Hengl et al., 2014). The inclusion of expert-informed pseudo-observations addresses 

gaps in data-sparse regions like deserts and glaciers. Results are openly available via web-based 

platforms under an Open Database License. While limitations remain in highly variable landscapes, 

SoilGrids250m offers a scalable and reproducible framework that supports global soil assessment, 

agricultural planning, and climate resilience initiatives. 

Using population GPS coordinates, SoilGrids250m data were obtained for pH, carbon, nitrogen, and 

water volume content. The data were accessed directly from the SoilGrids website (https://soilgrids.org/) 

in January 2025 for soil chemical properties under various soil depths (0 – 15, 15 – 30, 30 – 60, 60 – 

100, and 100 – 200 cm) over tropical climate Asia. Selected primary soil properties as defined and 

described in the GlobalSoilMap specifications with the following steps are: a) input soil data preparation, 

b) covariates’ selection, c) model tuning and cross-validation, d) final model fitting for prediction, and 

e) predictions with uncertainty estimation. 

 

2.3 Methodology 

The dataset reconsialization is done with Cygwin and Rstudio software with netcdf data format. Data 

reconsialization aims to equalize the data, so that all data have the same coverage, spatial and temporal 

resolution. Spatial delineation was performed to limit the geographic extent of the data to the 

administrative boundaries of Southeast Asia. This was necessary as the original datasets were global in 

scope, leading to large file sizes and computational inefficiencies during data extraction. By restricting 

the spatial extent, the processing time was significantly reduced and the data volume optimized for 
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regional analysis. Due to differences in the native spatial resolution of the datasets, resolution 

harmonization was required to ensure compatibility and consistency during validation.  

All datasets were standardized to a uniform spatial resolution of 0.25° × 0.25°. The final phase 

involved the extraction of gridded data values from NetCDF files to tabular format (.xlsx) based on 

preselected geographic sampling points. The extraction and conversion processes were executed using 

RStudio and relevant geospatial packages (e.g., ncdf4, raster, and tidyverse).  

To examine the relationship among soil chemical properties in the various soil depth over tropical 

Asi, we used Pearson's correlation coefficient (r) quantifies the linear relationship between two variables, 

with values ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation) and 

stepwise multiple linear regression analysis was undertaken (Munny et al., 2021). 

 

3. Results  

3.1 Soil pH 

Figure 2. illustrates the spatial distribution of soil pH at different depths (5, 15, 30, 60, 100, and 200 cm) 

across tropical climate Asia. The spatial patterns also suggest potential management priorities. Areas 

with already neutral to slightly acidic soils may only need minimal interventions, whereas highly acidic 

regions must integrate soil pH management strategies to sustain productivity. With the intensification of 

agriculture and climate change, maintaining optimal pH is critical to avoid problems like aluminum 

toxicity and poor nutrient uptake (Hartemink & Barrow, 2023).  

 
Figure 2. Spatial distribution analysis of soil pH over tropical climate Asia 

The results shows that much of tropical climate Asia countries has soils ranging from moderately 

acidic to slightly acidic conditions, predominantly in the pH range of 5.4 to 7.1. Northern regions, such 

as Thailand, Laos, and parts of Vietnam, display relatively higher pH values, trending toward neutral 

(>5.4), depicted in medium to lighter green shades. In contrast, parts of Indonesia, Malaysia, and the 

Philippines show slightly more acidic soils (pH 4.7–5.4), visible in darker green hues. Some isolated 

areas, particularly in southern Indonesia and Papua, exhibit even lower pH values (below 4.7), suggesting 

the presence of highly weathered and leached soils. At the surface (5 cm), soil pH tends to be more acidic 

in tropical zones, a pattern consistent with high organic matter inputs and intense rainfall leading to 
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leaching of basic cations (Mg²⁺, Ca²⁺) (Hailegnaw et al., 2019). Deeper layers (e.g., 100 and 200 cm) 

show a slight increase in pH, suggesting a reduction in organic matter influence and possible 

accumulation of weathered mineral components that are less acidic (Wang & Kuzyakov, 2024). 

3.2 Cation Exchange Capacity (CEC) 

The spatial distribution of Cation Exchange Capacity (CEC) at different soil depths (5, 15, 30, 60, and 

100 cm) over tropical climate Asia shows in Figure 3, which has a critical CEC that measures a soil’s 

ability to hold and exchange positively charged ions (Ma et al., 2024), which is, high CEC is associated 

with greater soil fertility and better nutrient retention, essential for sustainable agricultural productivity 

(Ma et al., 2024). From the maps, northern regions, particularly parts of Vietnam, Laos, and northern 

Thailand, show relatively higher CEC values compared to southern parts like Indonesia and Malaysia. 

This trend may reflect the dominance of finer-textured soils (clay and silt) and higher soil organic carbon 

in the north (Bi et al., 2023).  

At shallow depths (5 cm), CEC is higher in many areas, especially where organic matter accumulation 

is significant due to plant residue and microbial activity. However, as depth increases to 100 cm, CEC 

generally decreases. In addition, most of locations (e.g., Thailand, Vietnam, Cambodia) shows moderate 

CEC values in the range of 10–30 cmolc/kg (depicted in medium shades of blue). In contrast, parts of 

Indonesia and the Philippines exhibit areas with much higher CEC, with values reaching above 30 

cmolc/kg, even exceeding 60 cmolc/kg in specific southern and eastern islands, represented in darker 

purple shades. Importantly, CEC influences not just fertility but also soil buffering capacity, impacting 

soil pH stability and vulnerability to acidification (Li et al., 2020). 

 

 
Figure 3. Spatial distribution analysis of CEC over tropical climate Asia 

 

3.3 Soil Organic Carbon (SOC) 

SOC levels are highly heterogeneous over tropical climate Asia countries and various soil depth, largely 

reflecting patterns of vegetation, climate, topography, and land use history. The highest SOC 

concentrations (> 2000 dg/kg) are concentrated in Borneo, Sumatra, and parts of Papua, areas dominated 

by dense tropical rainforests and peatlands as showed in Figure 4. These ecosystems are well known for 
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their high carbon sequestration capacities due to abundant biomass inputs and slow decomposition rates 

under saturated soil conditions (Bhattacharyya et al., 2022). These spatial variations have major 

implications for climate-smart agriculture and carbon accounting (Abdelrahman et al., 2020).  

Figure 4 shows at a consistent trend is observed where SOC concentrations are highest at the surface 

(0–20 cm) and decrease sharply with increasing soil depth, in agreement with recent finding, which is 

the deeper soil layers (100–140 cm) exhibit sharp declines in SOC content, often dropping below 100 

dg/kg in most regions except Kutai Kartanegara. The high SOC persistence in Kutai Kartanegara even 

at depth suggests either unique soil formation processes, less disturbance, or higher clay content that 

promotes carbon stabilization (Niu et al., 2023). In addition, Chiem Hoa, Chanthaburi, and the other 

sites show relatively moderate surface SOC concentrations (generally below 500 dg/kg). Interestingly, 

the relatively low SOC values across Gunung Kidul and Fak Fak could be associated with poor 

vegetation cover, intensive land use, or inherently low productivity soils (Zhu et al., 2021). This vertical 

distribution highlights the importance of protecting topsoil layers for carbon sequestration and climate 

mitigation efforts.  

 

 

  
Figure 4. Spatial distribution analysis of SOC over tropical climate Asia 

 

3.4 Soil density 

The spatial variability of soil physical conditions among sites and underscores the importance of 

maintaining low bulk density, particularly in the rooting zone, for sustainable land management and 

ecosystem services. Figure 5 shows that the spatial distribution of bulk density (BD) over tropical climate 

Asia countries at varying soil depths: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 

cm. Bulk density, expressed in kg/m³, is a key physical property that influences root penetration, water 

infiltration, and soil aeration. Higher BD values typically indicate soil compaction, reduced porosity, 

and impaired root growth, while lower BD values are generally associated with higher organic matter 

and better soil structure (Wang et al., 2022). 

The locations with low BD (< 85 kg/m³) are predominantly found in coastal and lowland peatlands, 

especially in Sumatra, Kalimantan, and Papua. These areas are rich in organic matter, which contributes 
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to lower density and higher porosity (Guo et al., 2024). Conversely, higher BD values (> 114 kg/m³) are 

observed in northern mainland Southeast Asia, such as Thailand, Laos, and parts of Vietnam, particularly 

at deeper depths. This pattern may be attributed to lower organic matter content (Qiu et al., 2015). 

The relationship between soil bulk density (kg/m³) and soil depth (cm) across six sites: Chiem Hoa, 

Chanthaburi, Kutai Kartanegara, Fak Fak, East Lampung, and Gunung Kidul. Overall, bulk density tends 

to increase with depth, a trend consistent with recent findings in soil studies (Panagos et al., 2024). At 

surface layers (0–20 cm), lower bulk densities are observed, particularly in Kutai Kartanegara and 

Gunung Kidul, with values around 110–120 kg/m³. This reflects higher organic matter content and 

greater soil porosity near the surface, typical in less compacted soils (Topa et al., 2021). As depth 

increases, soils become denser, reaching values up to 140 kg/m³ in deeper layers, notably in Chiem Hoa. 

Increased bulk density with depth is often due to reduced organic matter, greater soil compaction, and 

finer particle arrangement (Yang et al., 2022).  

 

 
Figure 5. Spatial distribution of soil bulk density in various soil depth 

 

3.5 Nitrogen content 

Figure 6. presents the spatial distribution of soil nitrogen (N) content (cg/kg) across Southeast Asia, from 

surface (0–5 cm) to subsoil layers (100–200 cm). The topsoil (0–5 cm) map reveals high nitrogen 

concentrations (> 4200 cg/kg) in forested and peat-rich areas such as Borneo, Sumatra, and parts of 

Papua. These regions are characterized by dense vegetation, high litterfall, and organic matter 

accumulation, which contribute to greater nitrogen retention in the surface layers (Yeung et al., 2025). 

In contrast, lower N values (≤ 1400 cg/kg) are observed in drier or intensively cultivated areas of 

mainland Southeast Asia, including Thailand and parts of Vietnam, where nitrogen is often depleted due 

to leaching, volatilization, or overextraction by crops (Guan et al., 2023).  

The relationship between nitrogen (N) content (mg/kg) and soil depth (cm) across six locations: 

Chiem Hoa, Chanthaburi, Kutai Kartanegara, Fak Fak, East Lampung, and Gunung Kidul. The general 

trend observed is a decrease in nitrogen content with increasing soil depth, which aligns with recent 

studies emphasizing nutrient stratification in soil profiles (Wang et al., 2022). At surface layers (0–20 
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cm), nitrogen content is highest, particularly in Chiem Hoa and Chanthaburi, where values approach or 

exceed 2800 mg/kg. 

Surface accumulation of nitrogen is commonly attributed to higher organic matter inputs, root 

activity, and microbial biomass concentration (Zhang et al., 2024). As soil depth increases (60–140 cm), 

nitrogen levels decline significantly, with Kutai Kartanegara and East Lampung showing a steeper 

decrease. This suggests limited nitrogen movement to deeper layers, likely due to strong immobilization 

in the topsoil or limited vertical water transport (Qiao et al., 2018). 

The decreasing nitrogen trend highlights the importance of surface soil management for maintaining 

soil fertility. Understanding the vertical distribution of nitrogen is crucial not only for nutrient 

management but also for mitigating environmental issues like nitrate leaching and groundwater 

contamination, which have become pressing concerns under changing climate conditions (Huang et al., 

2021). 

 

 
Figure 6. Spatial distribution of soil total nitrogen within the various of soil depth 

 

3.6 Interaction of each parameter 

This Figure 7 shows that four vertical profile plots in some parts area (Chiem Hoa, Chanthaburi, Kutai 

Kartanegara, Fak Fak, East Lampung, and Gunung Kidul) showing changes in soil chemical properties 

with depth (from 0 to 150 cm). In addition, the correlation matrix shows the relationships among various 

soil properties across different depths as shown in Figure 8. Soil organic carbon (SOC) content shows 

strong positive correlations with total nitrogen (N) across all depths (r > 0.8), a relationship widely 

documented in soil science (Yeung et al., 2025).  Bulk density (BD) generally shows moderate to strong 

negative correlations with SOC and nitrogen (r ≈ -0.5 to -0.8). Soils with higher organic matter tend to 

have lower bulk densities due to increased porosity and aggregation (Crnobrna et al., 2022).  
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Figure 7. Vertical distribution soil chemical properties in the various soil depth 

 

Interestingly, certain depths show weaker or even slightly positive correlations between BD and 

nutrient contents. Another notable observation is the strong inter-correlation among soil chemical 

parameters within the topsoil layers (0–40 cm), gradually weakening with depth. In contrast, deeper 

layers tend to be more stable, with slower nutrient turnover and less interaction between parameters. The 

negative correlations among some parameters, especially involving bulk density and chemical 

properties, are critical when considering land management practices. For instance, intensive agricultural 

practices that increase compaction can severely reduce SOC and nitrogen stocks (Abdelrahman et al., 

2020). The correlation matrix can guide future modeling efforts and provides crucial insights into the 

interconnectedness of soil physical and chemical properties. High SOC and nitrogen levels are associated 

with better soil structure (lower BD), especially in surface horizons.  

 
Figure 8. Correlation coefficients matrix of Pearson’s correlation analysis of soil properties 
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4. Conclusions  

This study highlights the spatial and vertical variability of key soil properties—pH, CEC, SOC, bulk 

density (BD), and nitrogen (N)—across tropical climate Asia, with significant implications for 

sustainable agriculture. Soils are generally moderately to slightly acidic, with lower pH observed in 

regions like Indonesia and Papua, where targeted management is essential. Cation Exchange Capacity 

(CEC) is higher in northern areas and surface layers, supporting nutrient retention and buffering capacity. 

Soil Organic Carbon (SOC) and nitrogen concentrations are highest at the surface, especially in forested 

regions, and decline with depth, emphasizing the importance of topsoil conservation. Bulk density 

increases with depth and shows a strong negative correlation with SOC and N, linking soil structure to 

fertility. These interconnected properties underscore the need for integrated land management 

strategies—such as organic matter application and reduced tillage—to enhance soil health, support crop 

productivity, and build resilience under changing climatic conditions. 
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